3.725 \(\int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^2 (c-i c \tan (e+f x))^4} \, dx\)

Optimal. Leaf size=221 \[ -\frac {5 A+3 i B}{64 a^2 c^4 f (-\tan (e+f x)+i)}+\frac {5 A+i B}{32 a^2 c^4 f (\tan (e+f x)+i)}-\frac {-B+i A}{64 a^2 c^4 f (-\tan (e+f x)+i)^2}-\frac {3 A-i B}{48 a^2 c^4 f (\tan (e+f x)+i)^3}-\frac {B+i A}{32 a^2 c^4 f (\tan (e+f x)+i)^4}+\frac {5 x (3 A+i B)}{64 a^2 c^4}+\frac {3 i A}{32 a^2 c^4 f (\tan (e+f x)+i)^2} \]

[Out]

5/64*(3*A+I*B)*x/a^2/c^4+1/64*(-I*A+B)/a^2/c^4/f/(-tan(f*x+e)+I)^2+1/64*(-5*A-3*I*B)/a^2/c^4/f/(-tan(f*x+e)+I)
+1/32*(-I*A-B)/a^2/c^4/f/(tan(f*x+e)+I)^4+1/48*(-3*A+I*B)/a^2/c^4/f/(tan(f*x+e)+I)^3+3/32*I*A/a^2/c^4/f/(tan(f
*x+e)+I)^2+1/32*(5*A+I*B)/a^2/c^4/f/(tan(f*x+e)+I)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 221, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {3588, 77, 203} \[ -\frac {5 A+3 i B}{64 a^2 c^4 f (-\tan (e+f x)+i)}+\frac {5 A+i B}{32 a^2 c^4 f (\tan (e+f x)+i)}-\frac {-B+i A}{64 a^2 c^4 f (-\tan (e+f x)+i)^2}-\frac {3 A-i B}{48 a^2 c^4 f (\tan (e+f x)+i)^3}-\frac {B+i A}{32 a^2 c^4 f (\tan (e+f x)+i)^4}+\frac {5 x (3 A+i B)}{64 a^2 c^4}+\frac {3 i A}{32 a^2 c^4 f (\tan (e+f x)+i)^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[e + f*x])/((a + I*a*Tan[e + f*x])^2*(c - I*c*Tan[e + f*x])^4),x]

[Out]

(5*(3*A + I*B)*x)/(64*a^2*c^4) - (I*A - B)/(64*a^2*c^4*f*(I - Tan[e + f*x])^2) - (5*A + (3*I)*B)/(64*a^2*c^4*f
*(I - Tan[e + f*x])) - (I*A + B)/(32*a^2*c^4*f*(I + Tan[e + f*x])^4) - (3*A - I*B)/(48*a^2*c^4*f*(I + Tan[e +
f*x])^3) + (((3*I)/32)*A)/(a^2*c^4*f*(I + Tan[e + f*x])^2) + (5*A + I*B)/(32*a^2*c^4*f*(I + Tan[e + f*x]))

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3588

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^2 (c-i c \tan (e+f x))^4} \, dx &=\frac {(a c) \operatorname {Subst}\left (\int \frac {A+B x}{(a+i a x)^3 (c-i c x)^5} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {(a c) \operatorname {Subst}\left (\int \left (\frac {i (A+i B)}{32 a^3 c^5 (-i+x)^3}+\frac {-5 A-3 i B}{64 a^3 c^5 (-i+x)^2}+\frac {i A+B}{8 a^3 c^5 (i+x)^5}+\frac {3 A-i B}{16 a^3 c^5 (i+x)^4}-\frac {3 i A}{16 a^3 c^5 (i+x)^3}+\frac {-5 A-i B}{32 a^3 c^5 (i+x)^2}+\frac {5 (3 A+i B)}{64 a^3 c^5 \left (1+x^2\right )}\right ) \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {i A-B}{64 a^2 c^4 f (i-\tan (e+f x))^2}-\frac {5 A+3 i B}{64 a^2 c^4 f (i-\tan (e+f x))}-\frac {i A+B}{32 a^2 c^4 f (i+\tan (e+f x))^4}-\frac {3 A-i B}{48 a^2 c^4 f (i+\tan (e+f x))^3}+\frac {3 i A}{32 a^2 c^4 f (i+\tan (e+f x))^2}+\frac {5 A+i B}{32 a^2 c^4 f (i+\tan (e+f x))}+\frac {(5 (3 A+i B)) \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{64 a^2 c^4 f}\\ &=\frac {5 (3 A+i B) x}{64 a^2 c^4}-\frac {i A-B}{64 a^2 c^4 f (i-\tan (e+f x))^2}-\frac {5 A+3 i B}{64 a^2 c^4 f (i-\tan (e+f x))}-\frac {i A+B}{32 a^2 c^4 f (i+\tan (e+f x))^4}-\frac {3 A-i B}{48 a^2 c^4 f (i+\tan (e+f x))^3}+\frac {3 i A}{32 a^2 c^4 f (i+\tan (e+f x))^2}+\frac {5 A+i B}{32 a^2 c^4 f (i+\tan (e+f x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.85, size = 232, normalized size = 1.05 \[ \frac {\sec ^2(e+f x) (\sin (4 (e+f x))-i \cos (4 (e+f x))) (30 (A (-3-12 i f x)+B (4 f x+i)) \cos (2 (e+f x))+16 (3 A+4 i B) \cos (4 (e+f x))-360 A f x \sin (2 (e+f x))-90 i A \sin (2 (e+f x))-96 i A \sin (4 (e+f x))-9 i A \sin (6 (e+f x))+3 A \cos (6 (e+f x))-240 A-30 B \sin (2 (e+f x))-120 i B f x \sin (2 (e+f x))+32 B \sin (4 (e+f x))+3 B \sin (6 (e+f x))+9 i B \cos (6 (e+f x)))}{1536 a^2 c^4 f (\tan (e+f x)-i)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[e + f*x])/((a + I*a*Tan[e + f*x])^2*(c - I*c*Tan[e + f*x])^4),x]

[Out]

(Sec[e + f*x]^2*((-I)*Cos[4*(e + f*x)] + Sin[4*(e + f*x)])*(-240*A + 30*(A*(-3 - (12*I)*f*x) + B*(I + 4*f*x))*
Cos[2*(e + f*x)] + 16*(3*A + (4*I)*B)*Cos[4*(e + f*x)] + 3*A*Cos[6*(e + f*x)] + (9*I)*B*Cos[6*(e + f*x)] - (90
*I)*A*Sin[2*(e + f*x)] - 30*B*Sin[2*(e + f*x)] - 360*A*f*x*Sin[2*(e + f*x)] - (120*I)*B*f*x*Sin[2*(e + f*x)] -
 (96*I)*A*Sin[4*(e + f*x)] + 32*B*Sin[4*(e + f*x)] - (9*I)*A*Sin[6*(e + f*x)] + 3*B*Sin[6*(e + f*x)]))/(1536*a
^2*c^4*f*(-I + Tan[e + f*x])^2)

________________________________________________________________________________________

fricas [A]  time = 1.22, size = 127, normalized size = 0.57 \[ \frac {{\left (120 \, {\left (3 \, A + i \, B\right )} f x e^{\left (4 i \, f x + 4 i \, e\right )} + {\left (-3 i \, A - 3 \, B\right )} e^{\left (12 i \, f x + 12 i \, e\right )} + {\left (-24 i \, A - 16 \, B\right )} e^{\left (10 i \, f x + 10 i \, e\right )} + {\left (-90 i \, A - 30 \, B\right )} e^{\left (8 i \, f x + 8 i \, e\right )} - 240 i \, A e^{\left (6 i \, f x + 6 i \, e\right )} + {\left (72 i \, A - 48 \, B\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + 6 i \, A - 6 \, B\right )} e^{\left (-4 i \, f x - 4 i \, e\right )}}{1536 \, a^{2} c^{4} f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^2/(c-I*c*tan(f*x+e))^4,x, algorithm="fricas")

[Out]

1/1536*(120*(3*A + I*B)*f*x*e^(4*I*f*x + 4*I*e) + (-3*I*A - 3*B)*e^(12*I*f*x + 12*I*e) + (-24*I*A - 16*B)*e^(1
0*I*f*x + 10*I*e) + (-90*I*A - 30*B)*e^(8*I*f*x + 8*I*e) - 240*I*A*e^(6*I*f*x + 6*I*e) + (72*I*A - 48*B)*e^(2*
I*f*x + 2*I*e) + 6*I*A - 6*B)*e^(-4*I*f*x - 4*I*e)/(a^2*c^4*f)

________________________________________________________________________________________

giac [A]  time = 3.39, size = 243, normalized size = 1.10 \[ \frac {\frac {12 \, {\left (15 i \, A - 5 \, B\right )} \log \left (\tan \left (f x + e\right ) + i\right )}{a^{2} c^{4}} + \frac {12 \, {\left (-15 i \, A + 5 \, B\right )} \log \left (\tan \left (f x + e\right ) - i\right )}{a^{2} c^{4}} - \frac {6 \, {\left (-45 i \, A \tan \left (f x + e\right )^{2} + 15 \, B \tan \left (f x + e\right )^{2} - 110 \, A \tan \left (f x + e\right ) - 42 i \, B \tan \left (f x + e\right ) + 69 i \, A - 31 \, B\right )}}{a^{2} c^{4} {\left (\tan \left (f x + e\right ) - i\right )}^{2}} + \frac {-375 i \, A \tan \left (f x + e\right )^{4} + 125 \, B \tan \left (f x + e\right )^{4} + 1740 \, A \tan \left (f x + e\right )^{3} + 548 i \, B \tan \left (f x + e\right )^{3} + 3114 i \, A \tan \left (f x + e\right )^{2} - 894 \, B \tan \left (f x + e\right )^{2} - 2604 \, A \tan \left (f x + e\right ) - 612 i \, B \tan \left (f x + e\right ) - 903 i \, A + 93 \, B}{a^{2} c^{4} {\left (\tan \left (f x + e\right ) + i\right )}^{4}}}{1536 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^2/(c-I*c*tan(f*x+e))^4,x, algorithm="giac")

[Out]

1/1536*(12*(15*I*A - 5*B)*log(tan(f*x + e) + I)/(a^2*c^4) + 12*(-15*I*A + 5*B)*log(tan(f*x + e) - I)/(a^2*c^4)
 - 6*(-45*I*A*tan(f*x + e)^2 + 15*B*tan(f*x + e)^2 - 110*A*tan(f*x + e) - 42*I*B*tan(f*x + e) + 69*I*A - 31*B)
/(a^2*c^4*(tan(f*x + e) - I)^2) + (-375*I*A*tan(f*x + e)^4 + 125*B*tan(f*x + e)^4 + 1740*A*tan(f*x + e)^3 + 54
8*I*B*tan(f*x + e)^3 + 3114*I*A*tan(f*x + e)^2 - 894*B*tan(f*x + e)^2 - 2604*A*tan(f*x + e) - 612*I*B*tan(f*x
+ e) - 903*I*A + 93*B)/(a^2*c^4*(tan(f*x + e) + I)^4))/f

________________________________________________________________________________________

maple [A]  time = 0.44, size = 351, normalized size = 1.59 \[ \frac {5 A}{32 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )+i\right )}+\frac {i B}{32 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )+i\right )}-\frac {5 \ln \left (\tan \left (f x +e \right )+i\right ) B}{128 f \,a^{2} c^{4}}+\frac {15 i \ln \left (\tan \left (f x +e \right )+i\right ) A}{128 f \,a^{2} c^{4}}-\frac {i A}{32 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )+i\right )^{4}}-\frac {B}{32 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )+i\right )^{4}}-\frac {A}{16 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )+i\right )^{3}}+\frac {i B}{48 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )+i\right )^{3}}+\frac {3 i A}{32 a^{2} c^{4} f \left (\tan \left (f x +e \right )+i\right )^{2}}-\frac {i A}{64 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )-i\right )^{2}}+\frac {B}{64 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )-i\right )^{2}}+\frac {5 A}{64 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )-i\right )}+\frac {3 i B}{64 f \,a^{2} c^{4} \left (\tan \left (f x +e \right )-i\right )}+\frac {5 \ln \left (\tan \left (f x +e \right )-i\right ) B}{128 f \,a^{2} c^{4}}-\frac {15 i \ln \left (\tan \left (f x +e \right )-i\right ) A}{128 f \,a^{2} c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^2/(c-I*c*tan(f*x+e))^4,x)

[Out]

5/32/f/a^2/c^4/(tan(f*x+e)+I)*A+1/32*I/f/a^2/c^4/(tan(f*x+e)+I)*B-5/128/f/a^2/c^4*ln(tan(f*x+e)+I)*B+15/128*I/
f/a^2/c^4*ln(tan(f*x+e)+I)*A-1/32*I/f/a^2/c^4/(tan(f*x+e)+I)^4*A-1/32/f/a^2/c^4/(tan(f*x+e)+I)^4*B-1/16/f/a^2/
c^4/(tan(f*x+e)+I)^3*A+1/48*I/f/a^2/c^4/(tan(f*x+e)+I)^3*B+3/32*I*A/a^2/c^4/f/(tan(f*x+e)+I)^2-1/64*I/f/a^2/c^
4/(tan(f*x+e)-I)^2*A+1/64/f/a^2/c^4/(tan(f*x+e)-I)^2*B+5/64/f/a^2/c^4/(tan(f*x+e)-I)*A+3/64*I/f/a^2/c^4/(tan(f
*x+e)-I)*B+5/128/f/a^2/c^4*ln(tan(f*x+e)-I)*B-15/128*I/f/a^2/c^4*ln(tan(f*x+e)-I)*A

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^2/(c-I*c*tan(f*x+e))^4,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

mupad [B]  time = 10.17, size = 247, normalized size = 1.12 \[ \frac {\frac {B}{12\,a^2\,c^4}+{\mathrm {tan}\left (e+f\,x\right )}^4\,\left (-\frac {5\,B}{32\,a^2\,c^4}+\frac {A\,15{}\mathrm {i}}{32\,a^2\,c^4}\right )+{\mathrm {tan}\left (e+f\,x\right )}^3\,\left (\frac {5\,A}{32\,a^2\,c^4}+\frac {B\,5{}\mathrm {i}}{96\,a^2\,c^4}\right )+{\mathrm {tan}\left (e+f\,x\right )}^5\,\left (\frac {15\,A}{64\,a^2\,c^4}+\frac {B\,5{}\mathrm {i}}{64\,a^2\,c^4}\right )+{\mathrm {tan}\left (e+f\,x\right )}^2\,\left (-\frac {25\,B}{96\,a^2\,c^4}+\frac {A\,25{}\mathrm {i}}{32\,a^2\,c^4}\right )-\mathrm {tan}\left (e+f\,x\right )\,\left (\frac {17\,A}{64\,a^2\,c^4}+\frac {B\,17{}\mathrm {i}}{192\,a^2\,c^4}\right )+\frac {A\,1{}\mathrm {i}}{4\,a^2\,c^4}}{f\,\left ({\mathrm {tan}\left (e+f\,x\right )}^6+{\mathrm {tan}\left (e+f\,x\right )}^5\,2{}\mathrm {i}+{\mathrm {tan}\left (e+f\,x\right )}^4+{\mathrm {tan}\left (e+f\,x\right )}^3\,4{}\mathrm {i}-{\mathrm {tan}\left (e+f\,x\right )}^2+\mathrm {tan}\left (e+f\,x\right )\,2{}\mathrm {i}-1\right )}+\frac {5\,x\,\left (3\,A+B\,1{}\mathrm {i}\right )}{64\,a^2\,c^4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*tan(e + f*x))/((a + a*tan(e + f*x)*1i)^2*(c - c*tan(e + f*x)*1i)^4),x)

[Out]

(tan(e + f*x)^4*((A*15i)/(32*a^2*c^4) - (5*B)/(32*a^2*c^4)) - tan(e + f*x)*((17*A)/(64*a^2*c^4) + (B*17i)/(192
*a^2*c^4)) + tan(e + f*x)^3*((5*A)/(32*a^2*c^4) + (B*5i)/(96*a^2*c^4)) + tan(e + f*x)^5*((15*A)/(64*a^2*c^4) +
 (B*5i)/(64*a^2*c^4)) + tan(e + f*x)^2*((A*25i)/(32*a^2*c^4) - (25*B)/(96*a^2*c^4)) + (A*1i)/(4*a^2*c^4) + B/(
12*a^2*c^4))/(f*(tan(e + f*x)*2i - tan(e + f*x)^2 + tan(e + f*x)^3*4i + tan(e + f*x)^4 + tan(e + f*x)^5*2i + t
an(e + f*x)^6 - 1)) + (5*x*(3*A + B*1i))/(64*a^2*c^4)

________________________________________________________________________________________

sympy [A]  time = 1.22, size = 502, normalized size = 2.27 \[ \begin {cases} \frac {\left (- 2061584302080 i A a^{10} c^{20} f^{5} e^{8 i e} e^{2 i f x} + \left (51539607552 i A a^{10} c^{20} f^{5} e^{2 i e} - 51539607552 B a^{10} c^{20} f^{5} e^{2 i e}\right ) e^{- 4 i f x} + \left (618475290624 i A a^{10} c^{20} f^{5} e^{4 i e} - 412316860416 B a^{10} c^{20} f^{5} e^{4 i e}\right ) e^{- 2 i f x} + \left (- 773094113280 i A a^{10} c^{20} f^{5} e^{10 i e} - 257698037760 B a^{10} c^{20} f^{5} e^{10 i e}\right ) e^{4 i f x} + \left (- 206158430208 i A a^{10} c^{20} f^{5} e^{12 i e} - 137438953472 B a^{10} c^{20} f^{5} e^{12 i e}\right ) e^{6 i f x} + \left (- 25769803776 i A a^{10} c^{20} f^{5} e^{14 i e} - 25769803776 B a^{10} c^{20} f^{5} e^{14 i e}\right ) e^{8 i f x}\right ) e^{- 6 i e}}{13194139533312 a^{12} c^{24} f^{6}} & \text {for}\: 13194139533312 a^{12} c^{24} f^{6} e^{6 i e} \neq 0 \\x \left (- \frac {15 A + 5 i B}{64 a^{2} c^{4}} + \frac {\left (A e^{12 i e} + 6 A e^{10 i e} + 15 A e^{8 i e} + 20 A e^{6 i e} + 15 A e^{4 i e} + 6 A e^{2 i e} + A - i B e^{12 i e} - 4 i B e^{10 i e} - 5 i B e^{8 i e} + 5 i B e^{4 i e} + 4 i B e^{2 i e} + i B\right ) e^{- 4 i e}}{64 a^{2} c^{4}}\right ) & \text {otherwise} \end {cases} - \frac {x \left (- 15 A - 5 i B\right )}{64 a^{2} c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))**2/(c-I*c*tan(f*x+e))**4,x)

[Out]

Piecewise(((-2061584302080*I*A*a**10*c**20*f**5*exp(8*I*e)*exp(2*I*f*x) + (51539607552*I*A*a**10*c**20*f**5*ex
p(2*I*e) - 51539607552*B*a**10*c**20*f**5*exp(2*I*e))*exp(-4*I*f*x) + (618475290624*I*A*a**10*c**20*f**5*exp(4
*I*e) - 412316860416*B*a**10*c**20*f**5*exp(4*I*e))*exp(-2*I*f*x) + (-773094113280*I*A*a**10*c**20*f**5*exp(10
*I*e) - 257698037760*B*a**10*c**20*f**5*exp(10*I*e))*exp(4*I*f*x) + (-206158430208*I*A*a**10*c**20*f**5*exp(12
*I*e) - 137438953472*B*a**10*c**20*f**5*exp(12*I*e))*exp(6*I*f*x) + (-25769803776*I*A*a**10*c**20*f**5*exp(14*
I*e) - 25769803776*B*a**10*c**20*f**5*exp(14*I*e))*exp(8*I*f*x))*exp(-6*I*e)/(13194139533312*a**12*c**24*f**6)
, Ne(13194139533312*a**12*c**24*f**6*exp(6*I*e), 0)), (x*(-(15*A + 5*I*B)/(64*a**2*c**4) + (A*exp(12*I*e) + 6*
A*exp(10*I*e) + 15*A*exp(8*I*e) + 20*A*exp(6*I*e) + 15*A*exp(4*I*e) + 6*A*exp(2*I*e) + A - I*B*exp(12*I*e) - 4
*I*B*exp(10*I*e) - 5*I*B*exp(8*I*e) + 5*I*B*exp(4*I*e) + 4*I*B*exp(2*I*e) + I*B)*exp(-4*I*e)/(64*a**2*c**4)),
True)) - x*(-15*A - 5*I*B)/(64*a**2*c**4)

________________________________________________________________________________________